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Abstract 

Background  Kidney renal clear cell carcinoma (KIRC) is a common malignant tumor of the urinary system. This study 
aims to develop new biomarkers for KIRC and explore the impact of biomarkers on the immunotherapeutic efficacy 
for KIRC, providing a theoretical basis for the treatment of KIRC patients.

Methods  Transcriptome data for KIRC was obtained from the The Cancer Genome Atlas (TCGA) and International 
Cancer Genome Consortium (ICGC) databases. Weighted gene co-expression network analysis identified KIRC-
related modules of long noncoding RNAs (lncRNAs). Intersection analysis was performed differentially expressed 
lncRNAs between KIRC and normal control samples, and lncRNAs associated with N(7)-methylguanosine (m7G), 
resulting in differentially expressed m7G-associated lncRNAs in KIRC patients (DE-m7G-lncRNAs). Machine Learning 
was employed to select biomarkers for KIRC. The prognostic value of biomarkers and clinical features was evaluated 
using Kaplan-Meier (K-M) survival analysis, univariate and multivariate Cox regression analysis. A nomogram was con-
structed based on biomarkers and clinical features, and its efficacy was evaluated using calibration curves and deci-
sion curves. Functional enrichment analysis was performed to investigate the functional enrichment of biomarkers. 
Correlation analysis was conducted to explore the relationship between biomarkers and immune cell infiltration 
levels and common immune checkpoint in KIRC samples.

Results  By intersecting 575 KIRC-related module lncRNAs, 1773 differentially expressed lncRNAs, and 62 m7G-
related lncRNAs, we identified 42 DE-m7G-lncRNAs. Using XGBoost and Boruta algorithms, 8 biomarkers for KIRC 
were selected. Kaplan-Meier survival analysis showed significant survival differences in KIRC patients with high 
and low expression of the PTCSC3 and RP11-321G12.1. Univariate and multivariate Cox regression analyses showed 
that AP000696.2, PTCSC3 and clinical characteristics were independent prognostic factors for patients with KIRC. 
A nomogram based on these prognostic factors accurately predicted the prognosis of KIRC patients. The bio-
markers showed associations with clinical features of KIRC patients, mainly localized in the cytoplasm and related 
to cytokine-mediated immune response. Furthermore, immune feature analysis demonstrated a significant decrease 
in immune cell infiltration levels in KIRC samples compared to normal samples, with a negative correlation observed 
between the biomarkers and most differentially infiltrating immune cells and common immune checkpoints.

Conclusion  In summary, this study discovered eight prognostic biomarkers associated with KIRC patients. These 
biomarkers showed significant correlations with clinical features, immune cell infiltration, and immune checkpoint 
expression in KIRC patients, laying a theoretical foundation for the diagnosis and treatment of KIRC.
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Introduction
Kidney renal clear cell carcinoma (KIRC) is the most 
common histological type of renal cell carcinoma (RCC), 
accounting for more than 80% of all RCC cases, and is 
characterized by high heterogeneity, invasiveness, and 
poor prognosis [1]. Currently, partial nephrectomy and 
radical nephrectomy are the main treatments for early-
stage patients [2]. However, early surgical treatment is 
only effective in some patients, and some local tumor 
patients may experience recurrence and metastasis after 
surgery [3, 4], leading to poor prognosis [5]. Clinical 
studies have shown that RCC is insensitive to adjuvant 
therapy, radiotherapy, and chemotherapy after surgery, 
and the recurrence and metastasis rates are almost unaf-
fected [6, 7]. High-dose interleukin-2 has become a first-
line treatment option for patients with good Memorial 
Sloan-Kettering Cancer Center (MSKCC) scores and 
previously untreated metastatic renal cancer [8]. Immune 
checkpoint inhibitors have also been used as a first-line 
treatment option for advanced KIRC [9, 10]. Despite the 
development of tyrosine kinase inhibitors (TKIs) and 
immune checkpoint blockers (ICBs), such as Sorafenib, 
nivolumab, and ipilimumab, there are still reports of 
tumor recurrence and metastasis after treatment [11, 12]. 
Therefore, there is an urgent need to explore new bio-
markers and potential mechanisms to provide targets for 
clinical diagnosis and treatment.

M7G modification is a chemical process that adds a 
methyl group to the nitrogen at the seventh position of 
guanine in messenger RNA, catalyzed by methyltrans-
ferase enzymes [13]. It exists in mRNA, tRNA, rRNA, 
and microRNA [14], and is one of the most common 
types of post-transcriptional regulation.

Methylation of the N7 position on guanine in RNA, 
also known as m7G RNA methylation, plays a crucial role 
in regulating various fundamental biological processes 
such as miRNA biogenesis, cell migration, RNA stability, 
translation, and immunogenicity [15, 16].

Currently known m7G regulatory factors include 
the Trm8p/Trm82p heterodimer complex and Bud23/
Trm112 in yeast, as well as the corresponding orthologs 
METTL1/WDR4 and WBSCR22/TRMT112 in mammals 
[13]. Additionally, RNMT and RAM have been shown to 
participate in m7G modification in mammals [17].

METTL1 and its corresponding cofactor WDR4 
form the most comprehensively studied m7G regula-
tory factor in mammals. The METTL1-WDR4 complex 
catalyzes m7G modification on various RNA types [18]. 
Elevated expression of the METTL1-WDR4 complex 

has been linked to poor prognosis in hepatocellular 
carcinoma [19], intrahepatic cholangiocarcinoma [20], 
and lung cancer [21]. As a translation initiation fac-
tor, eIF4E plays a crucial role in RNA metabolism by 
directly binding to the m7G cap and influencing can-
cer-related mRNA expression at various levels, includ-
ing nuclear mRNA export, translation, and stability 
[22, 23]. Studies have shown that eIF4E overexpression 
is associated with cell proliferation and invasiveness 
in RCC and negatively correlated with microRNA-15a 
expression [24]. Inhibiting eIF4E can reduce malig-
nancy and increase sensitivity of RCC cells to chemo-
therapy and immunotherapy [25]. AGO2, a key element 
of the RNA-induced silencing complex, can inhibit 
mRNA translation by binding to the m7G cap [26]. 
The AGO2 rs4961280 AA/AC genotype is considered 
a biomarker of poor prognosis in RCC and the expres-
sion level of AGO2 can effectively reflect kidney can-
cer invasiveness [27]. Evidence increasingly suggests 
that m7G methylation is closely associated with tumor 
occurrence and development [28–30].

Non-coding RNA (ncRNA) is a type of RNA molecule 
that does not encode proteins but plays various physi-
ological roles in cells [31,  32]. Long noncoding RNA 
(lncRNA), as one of the major types of ncRNAs, is char-
acterized by its length exceeding 200 nucleotides [33]. 
LncRNA has been demonstrated to be an effective reg-
ulator of gene expression, achieving this through mech-
anisms such as chromatin remodeling, transcriptional 
regulation, post-transcriptional processing, and protein 
metabolism regulation [34]. Furthermore, lncRNA can 
exert significant influence on tumor cell proliferation 
and migration by regulating alternative splicing [35]. 
SNHG12 enhances tumor progression and sunitinib 
resistance in RCC by upregulating CDCA3 [36], while 
MIAT affects patient prognosis by promoting KIRC 
cell proliferation and metastasis through miR-29c-de-
pendent Loxl2 regulation.Silencing MIAT was found 
to inhibit in  vitro cell proliferation, migration, and 
invasion, as well as suppress tumor formation in  vivo 
in KIRC according to animal experiments [37]. There-
fore, a thorough investigation into the role of lncRNA 
in KIRC could be of great significance for its treatment.
The ENCODE project’s research findings suggest that 
there may be over 28,000 different lncRNAs encoded in 
the human genome, many of which are yet to be discov-
ered and annotated [38]. While it remains a challenging 
task to understand the functions and detailed char-
acterization of all lncRNAs, transcriptome profiling 
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through sequencing analysis has identified thousands of 
lncRNAs that are abnormally expressed or mutated in 
different cancers [39]. Recent research has discovered 
m7G modifications in pri-miRNA and lncRNA using 
novel m7G detection techniques [40, 41]. Notably, a 
recent study found that an m7G-related lncRNA risk 
model holds potential value in predicting tumor prog-
nosis and immunotherapy outcomes [42]. However, 
the potential of m7G-related lncRNA as a prognostic 
biomarker for KIRC and predicting immune therapy 
response remains unclear.

To investigate the prognostic value of m7G-related 
lncRNAs in KIRC, the lncRNA expression and clinical 
data of KIRC patients sourced from The Cancer Genome 
Atlas (TCGA) public database was used to screen bio-
markers for KIRC, and validated their prognostic value 
and predictive significance with clinical features through 
survival analysis, univariate, and multivariate analysis. 
Additionally, a column chart model was constructed for 
personalized prognosis evaluation, and its clinical value 
was verified using lncRNA expression and clinical data 
obtained from the International Cancer Genome Consor-
tium (ICGC) as an external dataset. Finally, enrichment 
analysis was performed to explain the potential mecha-
nisms of KIRC and explore the relationship between bio-
markers, immune cells, and immune checkpoint sites.

Materials and methods
Data source
Transcriptome data of KIRC was obtained from the 
The Cancer Genome Atlas (TCGA) database, consist-
ing of 531 KIRC samples and 72 normal control sam-
ples, serving as the training set. LncRNAs with zero 
expression in over 50% of the samples were excluded, 
resulting in the final TCGA-KIRC-lncRNA expres-
sion matrix. The ICGC-RECU-EU dataset, comprising 
91 KIRC samples and 45 normal control samples, was 
downloaded from the International Cancer Genome 
Consortium (ICGC) database as the validation set. 
Additionally, 29 m7G-related genes were extracted 
from published studies [15, 20].

Weighted gene co‑expression network analysis (WGCNA)
First, clustering analysis using the Hclust function was 
performed on the TCGA-KIRC dataset to identify out-
lier samples and generate a clustering tree [43]. Network 
topology analysis was then conducted using the pick-
SoftThreshold function to determine the soft-thresh-
olding power and assess scale-free topology [44]. The 
dynamic tree-cutting method was applied to identify co-
expression modules, with a minimum module size of 50 
for each lncRNA module. Hierarchical clustering trees 
were plotted, and modules with a correlation above 0.75 

were merged based on correlation analysis [43]. Pear-
son correlation analysis was performed to calculate the 
correlation coefficient (cor) between each module and 
the disease. The top two modules with the highest |cor| 
value were selected as key modules, and the lncRNAs 
within these modules were considered KIRC-related 
module lncRNAs [44].

Identification of differentially expressed m7G‑related 
lncRNAs (DE‑m7G‑lncRNAs) in KIRC patients
Differential analysis of the lncRNA expression matrix 
from the TCGA-KIRC dataset was performed using the 
“DESeq2” R package. The criteria of adj.p.value < 0.05 and 
|log2FC| > 1 were used to identify differentially expressed 
lncRNAs between KIRC samples and normal control 
samples [45]. The results were visualized using volcano 
plots generated with the “ggplot2” R package [46]. Heat-
maps were also created using the “Pheatmap” R package 
to display the expression patterns of the top 20 upregu-
lated and downregulated lncRNAs [46].

Pearson correlation analysis was then conducted in the 
TCGA-KIRC dataset to determine the correlation coef-
ficients between m7G-related genes and all lncRNAs. 
lncRNAs with |cor| > 0.6 and p < 0.001 were considered 
as m7G-related lncRNAs [47].

The DE-m7G-lncRNAs were obtained by taking the 
intersection of the KIRC-related module lncRNAs, dif-
ferentially expressed lncRNAs between KIRC and normal 
controls, and m7G-related lncRNAs [48]. The expression 
patterns of DE-m7G-lncRNAs in KIRC and normal con-
trol samples were visualized using both volcano plots and 
heatmaps created with the “ggplot2” and “Pheatmap” R 
packages, respectively [46].

Machine learning algorithm for biomarker selection
The “xgboost” R package was used to perform Extreme 
Gradient Boosting (XGBoost) analysis on the DE-m7G-
lncRNAs [49]. The top 10 lncRNAs with the highest 
importance scores were selected as feature lncRNAs [49].

Simultaneously, the “Boruta” R package was employed 
to conduct Boruta analysis on the DE-m7G-lncRNAs 
[50]. The top 10 lncRNAs with the most significant 
importance were chosen as feature lncRNAs [50] .

The characteristic lncRNAs obtained by XGBoost and 
Boruta algorithms were intersected to obtain the bio-
markers of KIRC [48].

Evaluation of biomarker prognostic value
The TCGA-KIRC dataset patients were divided into 
high/low expression groups based on the median expres-
sion levels of each biomarker. The relationship between 
the biomarkers and the survival outcomes of KIRC 
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patients was explored using Kaplan-Meier (K-M) sur-
vival analysis [51].

Next, to investigate the prognostic value of the bio-
markers and clinical factors, the R package “survival” 
was used to perform Univariate Cox regression analysis 
on the biomarkers and clinical factors of TCGA-KIRC 
dataset patients, including age, gender, grade, stage, T 
stage, N stage, and M stage. Significant factors associated 
with KIRC survival were selected [47]. Multivariate Cox 
regression analysis was then conducted on the identified 
factors to determine their association with the progno-
sis of KIRC patients [47]. A nomogram was constructed 
based on the factors associated with the prognosis of 
KIRC patients. The accuracy of the diagram was evalu-
ated using calibration curves, and decision curves along 
with clinical impact curves were used to assess its clinical 
significance [47].

Validation of biomarkers
The expression differences of the biomarker lncR-
NAs between KIRC patients and normal controls were 
explored in both the TCGA-KIRC dataset and the ICGC 
validation set. The significance of the differences was 
assessed using the Wilcoxon test [52]. Pearson correla-
tion analysis was performed in both datasets to investi-
gate the relationship between the biomarkers and clinical 
features [47]. Furthermore, group analysis was conducted 
to assess the differences in expression levels of the bio-
markers among various subgroups of clinical features 
[47]. Receiver operating characteristic curves (ROC) 
were plotted using the “pROC” package in R to evaluate 
the diagnostic accuracy of the biomarkers for KIRC [47].

Subcellular localization
The sequence information of the biomarkers was 
retrieved from the ENSEMBL database, and their sub-
cellular localization was predicted using the lncLocator 
online tool (http://​www.​csbio.​sjtu.​edu.​cn/​bioinf/​lncLo​
cator/#) [53].

Gene set enrichment analysis (GSEA)
The patients were divided into high and low expression 
groups based on the median expression values of each 
biomarker. GSEA was conducted on the biomarkers 
using the “clusterProfiler” R package and the gene set 
c2.cp.kegg.v7.5.1.symbols.gmt [54].

Immune infiltration landscape
Using the single-sample gene set enrichment analysis 
(ssGSEA) algorithm, the infiltration levels of 28 immune 
cell types were calculated in the TCGA-KIRC data-
set [55]. Pearson correlation analysis was conducted 
to explore the correlation between the biomarkers and 

differential immune infiltrating cells [47], as well as 
the correlation between the biomarkers and common 
immune checkpoints [47].

Results
Identification of module‑related lncRNAs associated 
with KIRC
Clustering analysis identified five outlier samples in the 
TCGA-KIRC dataset, which were subsequently excluded 
(above the red line) (Fig.  1a). Network topology analy-
sis revealed a scale-free topology with a fitting index of 
0.85 when the soft threshold power was set to 3 (red line) 
(Fig.  1b). Dynamic tree cutting module identification 
resulted in the identification of nine co-expression mod-
ules, with inter-module correlations below 0.75 (Fig. 1c-
d). Pearson correlation analysis highlighted the MEblue 
and MEpink modules as having the highest correlation 
with KIRC (|cor|>0.5, p < 0.05). Therefore, the MEblue 
and MEpink modules, which consisted of 575 lncRNAs, 
were selected as module-related lncRNAs associated 
with KIRC (Fig. 1e).

Identification of DE‑m7G‑lncRNAs
In the TCGA-KIRC dataset, lncRNAs with differen-
tial expression between KIRC and normal control sam-
ples were screened. Differential analysis of the lncRNA 
expression matrix identified 1773 lncRNAs that exhibited 
differential expression between KIRC and normal control 
samples. Among them, 1342 lncRNAs were significantly 
upregulated, while 431 lncRNAs were significantly down-
regulated (Fig. 2a, b).

Correlation analysis further identified 62 m7G-related 
lncRNAs in the TCGA-KIRC dataset (Fig. 2c). By taking 
the intersection of the module-related lncRNAs associ-
ated with KIRC, the differentially expressed lncRNAs 
between KIRC and normal control samples, and the 
m7G-related lncRNAs, a set of 42 DE-m7G-lncRNAs was 
obtained (Fig. 2d). Interestingly, all 42 DE-m7G-lncRNAs 
were found to be downregulated in KIRC (Fig. 2e, f ).

Identification of biomarkers for KIRC
The intersection of the top 10 feature lncRNAs obtained 
from both the XGBoost and Boruta algorithms resulted 
in eight intersecting lncRNAs, which were identified 
as biomarkers for KIRC (Fig. 3a-c). The eight biomark-
ers were: CTD-2626G11.2, AP000696.2, RP11-528A4.2, 
LINC00645, RP4-655J12.4, RP11-321G12.1, RP11-
195B3.1, and PTCSC3.

Prognostic prediction of KIRC patients based 
on biomarker‑constructed nomogram
K-M survival analysis revealed a significant difference in 
the survival capacity between high and low expression 

http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/#
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/#
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groups of biomarkers PTCSC3 and RP11-321G12.1 in the 
TCGA-KIRC dataset (p < 0.05) (Fig. 4a, b and Figure S1 a-f).

Furthermore, in the TCGA-KIRC dataset, univariate 
Cox regression analysis showed that age, grade, stage, T 
stage, M stage, N stage, AP000696.2, and PTCSC3 were 
associated with the survival capacity of KIRC patients 
(p < 0.05) (Fig. 4c). Multivariate Cox regression analysis 

indicated that age, stage, and T stage were independent 
prognostic factors for KIRC patients (p < 0.05) (Fig. 4d). 
A nomogram was constructed based on the factors age, 
grade, stage, T stage, M stage, N stage, AP000696.2, 
and PTCSC3, which were associated with the survival 
capacity of KIRC patients (Fig.  4e). The calibration 
curve demonstrated the accurate prognostic prediction 

Fig. 1  Construction of the co-expression network. a Sample clustering tree. b Analysis of the network topology of soft threshold power. Soft 
threshold (power = 3) and scale-free topology fit index (R2 = 0.85). c Tree diagram based on hierarchical clustering under optimal soft thresholds. 
d Correlation diagram between modules obtained by clustering according to inter-gene expression levels. e Heat map of the correlation 
between module characteristic genes and clinical features (normal and tumor). Correlations and p-values are provided for each module The values 
in the small cells of the graph represent the two-calculated correlation values cor coefficients between the eigenvalues of each trait and each 
module as well as the corresponding statistically significant p-values. Color corresponds to the size of the correlation; the darker the red, the more 
positive the correlation; the darker the green, the more negative the correlation
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Fig. 2  Identification of differentially expressed genes (DEGs). a,b The volcano plot (a) and heatmap (b) of differentially expressed lncRNAs 
between KIRC samples and adjacent normal samples. Red denotes upregulated genes, and blue denotes downregulated genes in both volcano 
plots and heatmaps. The horizontal axis of the heatmaps represents the samples, and the vertical axis of heatmaps presents the top forty DEGs. 
c Correlation analysis of m7G-associated genes with lncRNAs. d The venn plot of KIRC-related modules lncRNAs (yellow), differentially expressed 
lncRNAs (pink) between KIRC and normal controls, and m7G-associated lncRNAs (green). e The volcano plot of 42 differentially expressed 
DE-m7G-realted lncRNAs. f Heat map for the expression of 42 DE-m7G-lncRNAs in normal kidney tissue and tumor tissue
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ability of the forest plot model for KIRC patients 
(Fig.  4f ). Moreover, the decision curve analysis (DCA) 
curve showed that the forest plot model combining 
clinical factors and biomarkers had a higher net bene-
fit than individual factors (Fig. 4g). The clinical impact 
curve (CIC) demonstrated the accurate prognostic pre-
diction ability of the forest plot model for KIRC patients 
(Fig. 4h).

Validation of biomarkers
The expression profiles of biomarker were explored in 
both the TCGA-KIRC dataset and the ICGC-RECU-EU 
validation dataset. The results revealed that the expres-
sion levels of the eight biomarkers in KIRC patients from 
the TCGA-KIRC dataset were significantly lower than 
those in normal control samples (p.adj < 0.05) (Fig. 5a and 
Fig. 2e, f ). In the ICGC-RECU-EU validation dataset, the 
expression of seven biomarkers (including AP000696.2, 
RP11-528A4.2, LINC00645, RP4-655J12.4, RP11-
321G12.1, RP11-195B3.1, and PTCSC3) was detected, 

Fig. 3  Identification of biomarkers. a Importance scores of the features obtained from the XGBoost model trained with the DE-m7G-lncRNAs. 
Features are listed in descending order of their importance scores, and only the top 10 features are shown in the figure. b Feature selection 
analyzed by Boruta algorithm. The horizontal axis is the name of each variable, and the vertical axis is the Z-value of each variable. The box plot 
shows the Z-value of each variable in the model calculation. The green boxes represent the 38 important variables, the yellow represents tentative 
attributes, and the red represents unimportant variables. c Venn diagram displaying the intersection results of the top 10 feature lncRNAs obtained 
from the Boruta and XGBoost algorithms

(See figure on next page.)
Fig. 4  Independent prognostic analysis. a Patients with high expression of RP11-321G12.1 have reduced viability. b Reduced viability in patients 
with low PTCSC3 expression. c Univariate Cox regression analysis. d Multivariate Cox regression analysis. Forest plots show significant urvival-related 
factors based on univariate Cox regression analysis and multivariate Cox regression analyses. Note: P values were calculated by log-rank test. HR: 
hazard ratio; CI: confidence interval; ∗: P < 0.05; ∗∗: P < 0.01. e Nomogram combining clinicopathological variables and risk score. (f ) Calibration 
curves of the nomogram for predicting survival at 1, 3, and 5 years. The nomogram prediction accuracy is higher if the actual curve is closer 
to the ideal curve. The gray dotted lines represent the ideal curve, and the blue, red, and green lines represent the actual curves for 1-year, 
3-year, and 5-year survival rates. g Decision curve analysis (DCA) showing the clinical benefits of a predictive nomogram. h Clinical impact curve 
of nomogram. CIC visually shows that nomogram has high clinical net benefit and confirms the clinical value of nomogram
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and their expression levels were significantly lower in 
KIRC patients compared to normal controls (p.adj < 0.05) 
(Fig. 5b).

Correlation analysis in the TCGA-KIRC dataset 
revealed that RP11-528A4.2 was negatively correlated 
with patient age, LINC00645 was negatively correlated 

Fig. 4  (See legend on previous page.)
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Fig. 5   Analysis of expression and clinical correlation for biomarkers. a,b Differential expression of 8 biomarkers in normal and KIRC tissues 
in the TCGA-KIRC dataset (training set) (a) and the ICGC-RECU-EU dataset (validation set) (b). Note: CTD-2626G11.2 was not annotated in the ICGC 
test set. c,d Correlation of biomarkers with clinical features in the training set (c) and validation set (d). e-g The expression of biomarkers in KIRC 
patients under different clinical features (including age, tumor grade, tumor stage and tumor T stage) in the TCGA-KIRC dataset
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with tumor stage, PTCSC3 was positively correlated with 
gender, and AP000696.2 was positively correlated with 
tumor stage, T stage, and M stage (Fig. 5c).

Furthermore, subgroup analysis revealed significant 
differences in the expression levels of CTD-2626G11.2 
and PTCSC3 between different genders in the TCGA-
KIRC dataset (p < 0.05) (Fig.  5d). The expression level 
of AP000696.2 was significantly higher in high-grade 
KIRC patients compared to low-grade KIRC patients 
(Fig.  5e). Moreover, the expression level of AP000696.2 
was significantly higher in advanced-stage KIRC patients 
compared to early-stage KIRC patients (Fig.  5f ). Addi-
tionally, T3/4 stage KIRC patients exhibited significantly 
higher expression of AP000696.2 compared to T1/2 
stage KIRC patients (Fig. 5g). There were no significant 
differences in the expression levels of the remaining bio-
markers among the subgroups based on pathological 
features (Figure S2a-c).

Furthermore, in both the TCGA-KIRC dataset and the 
validation dataset, the ROC curve analysis revealed that 
the area under the curve (AUC) for the biomarkers was 
greater than 0.95, indicating that these biomarkers can 
accurately diagnose KIRC (Figure S3a, b).

Subcellular localization
Subcellular localization of lncRNAs is closely related to 
their functions. Subcellular localization prediction was 
performed for each biomarker. The results revealed that 
the biomarkers CTD-2626G11.2, AP000696.2, RP11-
528A4.2, LINC00645, RP4-655J12.4, RP11-321G12.1, 
and PTCSC3 were primarily located in the cytoplasm, 
suggesting their potential involvement in post-transcrip-
tional regulation (Fig. 6).

Biomarkers mainly associated with cytokine‑mediated 
immune response
GSEA enrichment analysis revealed that the eight bio-
markers were primarily associated with various cellu-
lar processes related to immune responses mediated by 
cytokines. These processes include allograft rejection, 
autoimmune thyroid disease, graft-versus-host dis-
ease, ribosomes, type 1 diabetes, interaction between 
cytokines and cytokine receptors, leishmaniasis infec-
tion, oxidative phosphorylation, chemokine signaling 
pathway, peroxisomes, degradation of valine, leucine, and 
isoleucine (Fig. 7).

The infiltration levels of immune cells in KIRC samples were 
significantly elevated
In the TCGA-KIRC dataset, there were significant dif-
ferences in the infiltration levels of 28 immune cell types 

between KIRC samples and normal samples (Fig. 8a, b). 
Among them, the infiltration levels of CD56 (bright) 
natural killer cells, eosinophils, immature dendritic 
cells, and helper T cells 17 were significantly lower in 
KIRC samples compared to normal samples. However, 
the infiltration levels of the remaining 24 immune cell 
types in KIRC samples were significantly higher than in 
normal samples. Furthermore, correlation analysis indi-
cated a negative correlation (p < 0.05) between biomark-
ers and most of the differentially infiltrated immune cells 
(Fig. 8c).

Additionally, correlation analysis showed a negative 
correlation (p < 0.05) between biomarkers in the TCGA-
KIRC dataset samples and common immune checkpoint 
markers (Fig. 9).

Discussion
RCC is the sixth most commonly diagnosed cancer in 
men and the tenth in women worldwide, accounting 
for 5% and 3% of all cancer diagnoses, respectively [56]. 
KIRC, being the major pathological subtype, has a higher 
risk of recurrence, metastasis, and poorer prognosis [57]. 
RCC is essentially a metabolic disease characterized by 
reprogramming of energy metabolism, in which patients 
have segmented metabolic fluxes of glycolysis and, in 
particular, impaired mitochondrial bioenergetics, oxi-
dative phosphorylation, and lipid metabolism [28–30]. 
M7G modifications are actively involved in biological 
and pathological functions by affecting the metabolism 
of various RNA molecules, processes that are important 
for normal cellular function and normal development 
of organisms [18]. This is one of the key reasons why we 
undertook this study. Moreover, numerous studies indi-
cate that m6A RNA methylation regulators are linked 
to the development and progress of human cancers 
[58], and prognostic models based on m6A RNA modi-
fication-related lncRNA have improved understanding 
of KIRC [21, 59]. However, few studies have examined 
m7G-related lncRNA in predicting KIRC patient progno-
sis. This study seeks to establish a prognostic model for 
KIRC patients’ lncRNA to assess its clinical usefulness 
and explore its correlation with immune cell infiltration 
and immune checkpoint sites in a systematic manner.

We obtained transcriptome and clinical data of KIRC 
samples and their corresponding normal controls from 
TCGA and ICGC databases. Using weighted gene co-
expression network analysis, differential analysis, and 
machine learning, we identified eight differentially 
expressed m7G-related lncRNAs as biomarkers.

Differential expression analysis revealed that the eight 
biomarkers were significantly down-regulated in KIRC. 
LncRNA and m7G correlation analysis showed that all 



Page 11 of 19Zhong et al. BMC Urology          (2023) 23:186 	

the final genes we obtained were lncRNAs associated 
with NUDT4. Studies have suggested that NUDT4 is sig-
nificantly downregulated in various cancers, including 
KIRC [60–62], which matches our results. Research in 
other cancer types has also indicated that NUDT4 down-
regulation affects tumor cell proliferation by impacting 
the m7G gene [63]. Research indicates that the absence 
of certain m7G-related regulatory factors is linked to 
disease. For example, the lack of the METTL1/WDR4 
complex impacts tRNA function and translation of mul-
tiple mRNAs, leading to abnormal cell cycle progression 
and proliferation [64]. Thus, combining our results with 
previously published findings, we propose that downreg-
ulation of lncRNA in diseases leads to m7G downregula-
tion, resulting in decreased RNA stability and impaired 

translation and regulation, ultimately causing the devel-
opment of various diseases.

Only a few studies have indicated that LINC00645 is 
downregulated in KIRC, but its role remains unclear [36, 
65]. The remaining seven biomarkers have been scarcely 
reported in KIRC. Our study reports for the first time on 
the prognostic value of RP4-655J12.4, RP11-321G12.1, 
RP11-195B3.1, CTD-2626G11.2, AP000696.2, PTCSC3, 
and RP11-528A4.2 in KIRC. Additionally, previous 
research has suggested that AP000696.2, LINC00645, 
and PTCSC3 have potential as biomarkers for differ-
ent cancers.Additionally, previous research has sug-
gested that AP000696.2, LINC00645, and PTCSC3 have 
potential as biomarkers for different cancers.AP000696.2 
exhibits superior predictive performance compared to 

Fig. 6  Subcellular localization prediction of 8 biomarkers
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Fig. 7  Gene enrichment analysis of different biomarkers
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Fig. 8  Analysis of immune infiltration in KIRC patient samples and its correlation with hub genes using ssGSEA. a Heat map showing the immune 
scores of 28 immune cells. Red indicates immune cell infiltration and blue indicates suppressed immune cells. b Box plot showing immune scores 
of 28 immune cells in KIRC patients samples and normal samples. c The correlation between biomarkers and immune cells
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Fig. 9  The relevance of biomarkers to common immune checkpoint markers
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traditional tumor markers in esophageal squamous cell 
carcinoma and may affect patient prognosis and treat-
ment by regulating angiogenesis [66, 67]. LINC00645 is 
a potential biomarker for acute rejection and graft loss 
in kidney allografts [68] and was also enriched in the 
same pathway in our GSEA analysis. Additionally, it can 
serve as an independent prognostic factor for lung can-
cer patients [69]. Experimental data suggest that PTCSC3 
has antitumor properties, as its overexpression inhibits 
thyroid papillary carcinoma cell proliferation and devel-
opment in vitro and in vivo by suppressing glycolysis and 
promoting PGK1 ubiquitin-mediated degradation [70].

Furthermore, K-M analysis revealed that the expression 
levels of PTCSC3 and RP11-321G12.1 were significantly 
associated with the prognosis of KIRC patients. We then 
used univariate and multivariate Cox regression analy-
ses to examine the association between AP000696.2, 
PTCSC3, clinical features of KIRC patients, and their 
prognosis. Based on these prognostic factors, a column 
chart was constructed to accurately predict the prognosis 
of KIRC patients.

Pearson correlation analysis was conducted to explore 
the correlation between the biomarkers and clinical fea-
tures, as well as their expression levels in different clinical 
feature subgroups. The results showed that AP000696.2 
was positively correlated with patient staging, T-staging, 
and M-staging in the TCGA-KIRC dataset. Addition-
ally, ROC curves of the biomarkers had an area under the 
curve greater than 0.95 in both the TCGA-KIRC dataset 
and the validation set, indicating their potential as diag-
nostic biomarkers for KIRC by accurately distinguishing 
KIRC samples from healthy controls.

To identify signaling pathways related to the occur-
rence and development of KIRC, GSEA was performed 
on the eight biomarkers. The results showed that these 
biomarkers were mainly involved in signaling pathways 
including allograft rejection, cytokine-cytokine receptor 
interactions, oxidative phosphorylation, chemokine sign-
aling pathway, and other pathways.

Studies have found that certain lncRNAs can serve 
as potential biomarkers for detecting acute rejection 
after kidney transplantation [68, 71], providing valu-
able prognostic information. This suggests that the eight 
biomarkers identified in our study may have significant 
prognostic value in KIRC patients.

As early as 2013, the Cancer Genome Atlas research 
on KIRC found that metabolic changes play a critical 
role in disease progression, including alterations in the 
pentose phosphate pathway, fatty acid synthesis path-
way, and tricarboxylic acid cycle, which are associated 
with poor prognosis [72, 73]. Given that oxidative phos-
phorylation participates in these pathways to provide 
energy conversion, we speculate that RP4-655J12.4 and 

CTD-2626G11.2 may affect metabolic pathways through 
their involvement in oxidative phosphorylation, ulti-
mately leading to poor prognosis for KIRC patients.

Interestingly, the cytokine-cytokine receptor interac-
tion pathway plays a crucial role in adaptive inflamma-
tory host defenses, cell growth, differentiation, cell death, 
angiogenesis, and developmental and repair processes 
aimed at restoring homeostasis [74, 75]. This pathway 
is commonly enriched in the development of liver can-
cer [76] and colorectal cancer [77]. Studies have shown 
that chemokines and cytokines, such as TNF-α, IL-2, and 
chemokine CCL2, play a role in the formation of the can-
cer microenvironment and are responsible for the migra-
tion of inflammatory cells and cancer cells [78].

In addition, we found that LINC00645 plays an onco-
genic role in endometrial cancer and glioma with high 
specificity [79, 80]. It has been reported that LINC00645 
can induce the activation of EMT and enhance the 
migratory and invasive abilities of tumor cells by regulat-
ing the expression of miRNA-205-3p and its target gene 
ZEB1 through the induction of the reverse transforming 
growth factor TGF-β [81]. These findings provide prom-
ising directions for elucidating the potential molecular 
mechanisms underlying the lncRNA characteristics of 
KIRC.

The multifunctionality of lncRNAs depends on their 
subcellular localization. If lncRNAs are located in the 
cytoplasm, they can act as ceRNAs and regulate mRNA 
stability or translation [82]. Our research results indicate 
that most biomarkers are mainly located in the cyto-
plasm, suggesting that they may participate in post-tran-
scriptional regulatory pathways.

RCC is one of the tumors with the highest degree of 
immune infiltration in pan-cancer comparisons. Char-
acteristics of the tumor microenvironment heavily 
influence disease biology and may affect the response to 
systemic therapy [83]. Several studies have shown that 
m7G-related genes shape TME by influencing the dis-
tribution of immune cells [84–86]. So, we implemented 
immune infiltration analysis to explore the relation-
ship of immune microenvironment to occurrence and 
development of KIRC. In our research results, the infil-
tration levels of 28 immune cells showed significant dif-
ferences between KIRC samples and normal samples. 
Immune cells and inflammatory cytokines in the tumor 
microenvironment can affect tumor development 
and occurrence. Tumor cells inhibit T cell activation 
through immune checkpoint, thereby avoiding anti-
tumor immune attacks and accelerating tumor dete-
rioration, which is also the main mechanism of cancer 
immune escape [87]. Therefore, targeting immune 
checkpoint inhibitors is a significant method for tumor 
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immunotherapy [88]. Our findings indicate changes in 
the immune microenvironment of KIRC, with most pri-
mary immune cells showing significantly higher infil-
tration levels than normal samples. Additionally, eight 
biomarkers were found to be significantly negatively 
correlated with the infiltration levels of immune cells, 
suggesting their potential involvement in regulating the 
immune microenvironment of KIRC.

Immunotherapy is mainly represented by immune 
checkpoint blockade (ICB) and chimeric antigen 
receptor T cell therapy (CAR-T) [89, 90]. Currently, it 
is also a first-line treatment for metastatic KIRC [91], 
with immune checkpoint inhibitors such as PD-1 and 
CTLA4 being widely used in clinical practice, such as 
nivolumab and Ipilimumab. ICB has shown significant 
efficacy in solid tumors, including melanoma, non-
small cell lung cancer, and renal cell carcinoma [89]. 
The upregulation of immune checkpoint molecules, 
including CTLA-4, PD-1, and PD-L1, has been shown 
to contribute to tumor immune escape [92]. In addi-
tion, some lncRNAs have been found to participate in 
regulating the expression of PD-1 by affecting the func-
tion of specific miRNAs. For example, the interaction 
between lncRNA SNHG14 and miR-5590-3p upregu-
lates Zinc finger E-box-binding homeobox  1 (ZEB1) 
to activate the PD-1/PD-L1 immune checkpoint, lead-
ing to the inactivation of CD8 + T cells and promoting 
immune escape of tumor cells in diffuse large B-cell 
lymphoma [93].

Immune checkpoints are essential predictive indica-
tors for assessing responses to immunotherapy. Our 
study found that eight lncRNAs exhibited significant 
negative correlations with some common immune check-
point sites (PDCD1, PDCD1LG2, CTLA4, HAVCR2, and 
LAG3) in KIRC. Specifically, RP4-655J12.4, PTCSC3, 
and AP000696.2 were negatively correlated with CD274. 
These findings suggest that the eight lncRNA model may 
play a role in evaluating patients’ response to immune 
checkpoint blockade therapy. However, there is currently 
no relevant report explaining the mechanism of action of 
these eight lncRNAs in immune dysregulation in KIRC.

Although this is not the first time that biomarkers 
have been predicted for RCC patients based on the tran-
scriptomic data [94], our study for the first time focused 
primarily on m7G methylation-related lncRNAs and 
identified eight DE-m7G-lncRNAs that could serve as 
biomarkers for KIRC. This may provide a new research 
direction for the study and treatment of KIRC.

Conclusions
We established a prognostic model for m7G-related 
lncRNAs using clinical and survival data from a large 
number of diagnosed KIRC patients in the TCGA 

database, and validated its prognostic value using an 
external dataset. However, this study still has some 
limitations. First, it is a retrospective analysis, which 
may have selection bias and recall bias. Second, we 
need more sample datasets for bioinformatics valida-
tion, such as CTD-2626G11.2, which was not detected 
in the ICGC validation set but included in our subse-
quent analysis for discussion purposes. Finally, further 
experimental mechanism research and clinical applica-
tion studies are necessary to verify our findings. We will 
continue to monitor the progress of related research. 
In conclusion, our study found that eight lncRNAs may 
serve as potential biomarkers for KIRC immunotherapy 
targets.
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